Differential expression of three distinct potassium currents in the ventral cochlear nucleus.

نویسندگان

  • Jason S Rothman
  • Paul B Manis
چکیده

In the ventral cochlear nucleus (VCN), neurons transform information from auditory nerve fibers into a set of parallel ascending pathways, each emphasizing different aspects of the acoustic environment. Previous studies have shown that VCN neurons differ in their intrinsic electrical properties, including the K+ currents they express. In this study, we examine these K+ currents in more detail using whole cell voltage-clamp techniques on isolated VCN cells from adult guinea pigs at 22 degrees C. Our results show a differential expression of three distinct K+ currents. Whereas some VCN cells express only a high-threshold delayed-rectifier-like current (IHT), others express IHT in combination with a fast inactivating current (IA) and/or a slow-inactivating low-threshold current (ILT). IHT, ILT, and IA, were partially blocked by 1 mM 4-aminopyridine. In contrast, only ILT was blocked by 10-100 nM dendrotoxin-I. A surprising finding was the wide range of levels of ILT, suggesting ILT is expressed as a continuum across cell types rather than modally in a particular cell type. IA, on the other hand, appears to be expressed only in cells that show little or no ILT, the Type I cells. Boltzmann analysis shows IHT activates with 164 +/- 12 (SE) nS peak conductance, -14.3 +/- 0.7 mV half-activation, and 7.0 +/- 0.5 mV slope factor. Similar analysis shows ILT activates with 171 +/- 22 nS peak conductance, -47.4 +/- 1.0 mV half-activation, and 5.8 +/- 0.3 mV slope factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons.

Neurons in the ventral cochlear nucleus (VCN) express three distinct K+ currents that differ in their voltage and time dependence, and in their inactivation behavior. In the present study, we quantitatively analyze the voltage-dependent kinetics of these three currents to gain further insight into how they regulate the discharge patterns of VCN neurons and to provide supporting data for the ide...

متن کامل

A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...

متن کامل

The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons.

Using kinetic data from three different K+ currents in acutely isolated neurons, a single electrical compartment representing the soma of a ventral cochlear nucleus (VCN) neuron was created. The K+ currents include a fast transient current (IA), a slow-inactivating low-threshold current (ILT), and a noninactivating high-threshold current (IHT). The model also includes a fast-inactivating Na+ cu...

متن کامل

Outward currents in isolated ventral cochlear nucleus neurons.

Neurons of the ventral cochlear nucleus (VCN) perform diverse information processing tasks on incoming activity from the auditory nerve. We have investigated the cellular basis for functional diversity in VCN cells by characterizing the outward membrane conductances of acutely isolated cells using whole-cell, tight-seal, current- and voltage-clamp techniques. The electrical responses of isolate...

متن کامل

The role of auditory nerve innervation and dendritic filtering in shaping onset responses in the ventral cochlear nucleus

Neurons in the ventral cochlear nucleus (VCN) that respond primarily at the onset of a pure tone stimulus show diversity in terms of peri-stimulus-time-histograms (PSTHs), rate-level functions, frequency tuning, and also their responses to broad band noise. A number of different mechanisms have been proposed as contributing to the onset characteristic: e.g. coincidence, depolarisation block, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 6  شماره 

صفحات  -

تاریخ انتشار 2003